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Abstract

Despite the strong association between hypertension
(HT) and heart-rate variability (HRV), the ability of
HRV to detect HT cases under the coexistence of sev-
eral pathologies remains unknown. The present study
aims to optimize the HT detection using machine- learn-
ing (ML) techniques, in 202 5-minute ECG recordings
from the MIMIC database. Recordings were classified by
blood pressure (BP) into normotensive (NT), prehyperten-
sive (PHT) and hypertensive (HT) with a cut-off BP of
< 120/80 mm Hg, ≤ 139/89 mm Hg and ≥ 140/90 mm
Hg, respectively. Time-, frequency-domain and Poincaré
HRV features were explored. Multi-class (MC), between-
class comparison (BC) and 1-vs-all analysis was per-
formed. Single- (SF) and multifeature (MF) classification
with 10-fold cross-validation and a 20% test set was also
performed. Statistically significant differences (p ≤ 0.022)
were found in MC and BC for most HRV features. Differ-
ences were more prominent in HT group (p ≤ 0.0003). The
best MF accuracy for MC was 95% using 6 features. HT
and NT detection accuracy was 87.5% and 95%, using 6
and 4 features, respectively, for 1-vs-all analysis. The pro-
posed models can be easily implemented and achieve high
classification accuracy. The results suggest the use of HRV
to detect HT or HT-prone patients in diseased population.

1. Introduction

Hypertension (HT) is a widespread disease [1]. Due to
the strong association with major health issues, the early
HT diagnosis and consistent follow-up are crucial not only
in preventing HT but also in reducing mortality risk [1, 2].
HT is defined as blood pressure (BP) ≥ 140 mmHg and
90 mmHg for systolic (SBP) and diastolic (DBP) mea-
surements, respectively [1]. So far, the golden standard of
HT detection is cuff-based measurements performed with

a sphygmomanometer at a doctor’s office [1, 3]. Unfortu-
nately, BP measurements are limited to sporadic visits to
the doctor or even regular but not continuous home mea-
surements, leaving a possibility of undetected HT events.

Due to this fact, many studies have focused on devel-
oping either hardware or software technology that allows
the non-stop BP measurement, hence facilitating the HT
detection. Hardware-oriented solutions include stress-free
cuff-based wearable devices prioritizing comfort and low-
volume or cuffless devices functioning in acoustic, tonom-
etry or optical modalities [4, 5]. Even though with lower
impact, downsized cuff-based devices are still perceivable.
As for cuffless technology, cuff-based calibration or multi-
ple signals are often required [4, 5].

Electrocardiography (ECG) and photoplethysmogra-
phy (PPG) analysis are two of the most popular software-
based solutions for HT detection [6–9]. Both are acquired
from routine devices originally used for other health-
related measurements, ECG and PPG oriented research
has made great steps towards continuous BP monitoring
and HT detection. Normally combined together, ECG-
PPG analysis allows the estimation of BP by measuring
the distance between two fiducial points of the two sig-
nals [6, 9]. Besides the fact that this technique is mostly
adequate for SBP but not for DBP calculation, the biggest
drawback of this method is the requirement of at least two
signal sources, which are not always available.

PPG technology is generally more adequate for BP esti-
mation, since PPG signal is a function of the blood vol-
ume running through the vessels [6]. Notwithstanding,
PPG recordings are extremely sensitive to motion artifacts,
which are present in long recordings [9]. On the other
hand, ECG alone does not contain direct BP-related in-
formation [7]. Even though it is easier to further process
the ECGs so that BP-related information is acquired than
to efficiently cancel motion artifacts, most studies insist on
analyzing PPG for BP-related purposes.
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The present study aims to take advantage of the strong
association between HT and heart-rate variability (HRV),
derived from ECGs, in order to create implementable mod-
els that will allow the efficient HT detection. HRV is a
measure of the autonomous nervous system calibration,
which is strongly associated with BP [10, 11]. Although
the HRV-BP interconnection is widely known, only a few
HRV-based methods exist to detect HT [12–14]. These
studies suffer from gaps in group separation or the inclu-
sion of additional pathologies, deviating the focus from HT
detection and putting it to a simple group classification,
which does not solve the HT detection problem.

2. Materials and Methods

The database consisted of 202 five-minute ECG record-
ings of critically-ill people from the MIMIC database [15].
Signals were extracted with a sampling rate of 125 Hz
and were resampled to 500 Hz to achieve better resolu-
tion. Lead II was analyzed as it was the most frequently
available channel. The corresponding arterial BP (ABP)
signals were also acquired for classification purposes.

Preprocessing of ECG signals included denoising (pow-
erline interference, muscle noise, baseline wander), ec-
topics correction and R-peak detection [16–18]. After-
wards, each signal was classified into normotensive (NT),
prehypertensive (PHT) and HT with the cut-off being
<120 mmHg and ≥ 140 mmHg for the NT and HT cases,
respectively. For this purpose, ABP signals were recruited.

For each recording, time-, frequency-domain and non-
linear HRV features were calculated. Each feature re-
veals information regarding sympathetic, parasympathetic
nervous system or sympathovagal balance. Time-domain
features included SDNN, VARNN, RMSSD and pNN50,

as described elsewhere, with NN being the interval be-
tween successive R peaks after ectopics correction [10,11].
Frequency-domain features included the power at different
frequency band as follows: VLF (<0.04 Hz), LF (≤ 0.15
Hz), HF (>0.15 Hz) and LF/HF [10, 11]. Nonlinear anal-
ysis consisted of Poincare indices such as SD1 and SD2,
measuring the instantaneous (short-time) and longitudinal
(long-time) HRV, respectively [11].

The analysis was performed by comparing/classifying
among the three BP groups and by performing an one-
vs-all analysis [NT vs PHT & HT (NT/non-NT), NT &
PHT vs HT (HT/non-HT)]. Being an intermediate group,
one-vs-all analysis with PHT forming a unique category
is of no meaning. Comparison was performed with
Kruskal-Wallis (KW, three groups) and Mann-Whitney U-
test (MWU, one-vs-all). For the classification, the Ensem-
ble method was chosen and the dataset was split with a
80 − 20 [%] proportion. In order to account for differ-
ent group size, 10-fold cross validation was performed.
For multi-feature classification, values were normalized
according to z-score and feature selection was performed
after ranking according to ANOVA, considering the com-
binations that provide the highest test accuracy.

3. Results

Table 1 shows the comparison among the three BP
classes (KW test) as well as the comparison in pairs of two
and the one-vs-all analysis. For the three-group compar-
ison, statistically significant differences are observed for
all features but LF/HF and SD1/SD2, when the PHT and
HT classes are compared. As for the comparison between
NT and PHT classes, statistically significant differences
are only seen for RMSSD, HF and SD1, due to Bonfer-

Table 1. Statistical comparison (p values) between different groups. KW (intergroup) and MWU (in pairs). One vs all:
MWU for each pair (NT/non-NT, HT/non-HT). St. sign. diff.: p ≤ 0.05 for KW and one vs all, p ≤ 0.017 for the rest.

NT vs PHT vs HT One vs all
Features KW NT-PHT PHT-HT NT-HT NT/non-NT HT/non-HT
mean < 0.0001 0.8199 0.0001 0.0003 0.0212 < 0.0001
median < 0.0001 0.8103 0.0001 0.0003 0.0220 < 0.0001
SDNN < 0.0001 0.9607 < 0.0001 < 0.0001 0.0001 < 0.0001
VARNN < 0.0001 0.9607 < 0.0001 < 0.0001 0.0001 < 0.0001
RMSSD < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
pNN50 < 0.0001 0.0348 < 0.0001 < 0.0001 < 0.0001 < 0.0001
VLF < 0.0001 0.3528 < 0.0001 < 0.0001 0.0062 0.0155
LF < 0.0001 0.0930 < 0.0001 < 0.0001 < 0.0001 < 0.0001
HF < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
LF/HF 0.1931 0.0435 0.7370 0.2165 0.0824 0.6115
SD1 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
SD2 < 0.0001 0.7866 < 0.0001 < 0.0001 0.0007 < 0.0001
SD1/SD2 0.1424 0.0954 0.9709 0.0682 0.0485 < 0.0001
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Figure 1. Box and whisker plot for each feature and class. We observe an increment in HT class in most of the features.
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Figure 2. Classification accuracy for the best performing
features and the multi-feature classification (MFC).

roni correction. The one-vs-all analysis showed statisti-
cally significant differences both when NT and when HT
are considered a unique class, suggesting that focusing on
the healthy (NT) or the high-risk (HT) group is feasible.

The box and whisker plots of each feature for the three
BP classes are illustrated in Figure 1. HRV is remarkably
higher in the HT group for most of the features. Addition-
ally considering Table 1, these differences are mostly sta-
tistically significant. The only exceptions are LF/HF and
SD1/SD2, where values in PHT and HT are comparable,
an observation also confirmed by the fact that LF/HF is
the only feature that did not show statistically significant
difference between the HT and non-HT classes.

The results of the classification among and between
classes can be seen in Figure 2, where due to space
limits only the accuracy of the best performing single-
feature classification problems as well as the accuracy of
the multi-feature classification are shown. For the three-
class problem, the accuracy is shown considering one
time each class as the positive one (NT, PHT, HT). The

highest accuracy was observed with multi-feature models.
These models consisted of 6 features for the three classes
and the HT/non-HT and 4 features for the NT/non-NT.
More specifically, for the three-class problem, the median,
SDNN, VARNN, RMSSD, pNN50 and VLF were used.
For the NT/non-NT classification, VARNN, LF, HF and
SD1 were used, while the best results were found using
SDNN, VARNN, pNN50, LF, HF and SD1 for the HT/non-
HT classification. As it can be seen, most of the fea-
tures contributing to the multi-feature classification anal-
ysis showed themselves quite high classification accuracy.

4. Discussion

The current work suggests the use of HRV-based mod-
els to detect HT via ECG signal analysis, which is less
prone to motion artifacts compared to PPG. Despite the
fact that ECG signals do not contain direct information
about BP, HRV, easy to be calculated, is widely connected
to BP [11]. For this purpose various time-,frequency-
domain and Poincare HRV indices were calculated. The
rationale behind the analysis is to study whether HRV is
a reliable marker of HT or elevated blood pressure and
whether HRV-based models are successful in detecting HT.
In order to achieve this, the discriminatory power of HRV
features was assesed both by comparing among the three
BP classes and by focusing on HT detection (HT/non-HT)
and elevated blood pressure detection as the group con-
taining PHT and HT recordings (NT/non-NT). In all cases,
statistically significant discrepancies were found.

Afterwards, single- and multi-feature classification
analysis was performed, also comparing among and be-
tween grouped classes. All in all, the classification ac-
curacy oscillated between 87.5% and 95%, with the de-
tection of elevated BP (NT/non-NT) showing the highest
accuracy of 95%, using only 4 features. This result sug-
gests the possibility of computationally simple yet reliable
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models that can be implemented in routine ECG devices.
This could facilitate the HT detection or the detection of
alarming situations in patients with elevated BP. To our
knowledge, this is the first study taking advantage of HRV-
based features and attempting classification by successive
BP classes showing an accuracy as high as 95%.

5. Conclusions

ECG analysis is a high-potential alternative to multi-
source signal techniques for HT detection. By taking ad-
vantage of the HRV-BP association, simple models can be
derived and implemented in monitoring devices, facilitat-
ing the HT detection and hindering the development of BP-
related health issues.
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